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Abstract

This paper describes a numerical methodology for calculating tonal noise propagation and radiation through

turbomachinery exhaust ducts, including non-uniform background jet flows. The numerical method is based on solution of

the linearized Euler equations directly in the frequency domain, employing a direct, sparse matrix solver in parallel.

Acoustic sources are introduced into the computational domain via the perfectly matched layer equations. Various test

cases including propagation through infinite ducts, and propagation and radiation through semi-infinite ducts with and

without liners are solved, and results are compared with analytical solutions. It is demonstrated that solutions even with

thin shear layers separating the exterior and jet streams at reasonably high Mach numbers can be obtained quite

successfully. The method is also validated by simulating the radiated sound waves from two actual engine exhaust cowl

geometries, and the results are compared with experimental data.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Great advances have been achieved in the past few decades in reducing the overall noise emission from
aircraft. Despite this the airline operators and aircraft manufacturers are still under pressure by government
agencies and communities living near airports to reduce the noise levels further. Among the dominant noise
sources on today’s large passenger aircraft is the fan noise radiating both forward and rearward, especially at
take off. Before its radiation, this component of noise propagates through the air intake and exhaust nozzles,
where part of the acoustic energy is absorbed by the acoustic linings embedded into the duct walls. Successful
lining design relies on predicting the modal content and propagation characteristics of this noise.

There are various important aspects in prediction of sound propagation through and radiation from engine
exhausts. High speed duct flows make the upstream and downstream running characteristics that carry the
acoustic energy quite disparate. Waves spinning and propagating in both directions must be resolved properly
by the used numerical method. This requires use of high-order algorithms and efficient numerical filters. Also
suitable implementation of the wall condition on the acoustic lining elements is needed. This is achieved for a
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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locally reacting liner by describing its response to the sound field in the frequency domain. This response is
communicated with the interior solution using the frequency-domain impedance condition [1]. However, the
stability and regularization of this condition under the presence of wall flow is a critical issue which is still
subject of research [2,3]. Time-domain computations involving liners and flow require special care and
treatment to prevent instability development [4–6]. In contrast, the unstable modes associated with the
impedance condition are most often eliminated naturally in a frequency-domain computation without a
particular treatment. This is also true [3,7] for the convective, shear layer (Kelvin–Helmholtz, K–H)
instabilities [8] that exist inherently in exhaust noise prediction problems. Time-domain simulations of the
exhaust noise radiation with the linearized Euler equations (LEE) sometimes fail as a result of the K–H
instability waves becoming temporally unbounded. Although it may be possible to suppress these instabilities
through some filtering or time-averaging procedures oriented toward the frequency of the sound field, this is
not a robust procedure, as the advantage of the time-domain method being able to simulate a broadband
source is lost.

Among the approaches to suppress the K–H instability in time-domain simulations of sound propagation
through, for example, plug flow jets has been the use of an artificial shear layer concept. The vortex sheet
separating the plug flow and the exterior stream is replaced by a gradually growing finite size shear layer. This
imitates an actual situation, and consequently a shift in the frequency of the most unstable mode is created
[9,10] to prevent the K–H instability. Another approach has been the drop of the mean flow gradients causing
the instability from the governing equations [11,12], which usually appears mostly close to the nozzle lip where
the shear layer is quite thin.

The above concerns associated with the liners and K–H instabilities that present in an actual exhaust noise
radiation problem are alleviated in the present paper by a direct, frequency-domain solution approach. From
the same point of view, Zhao and Morris [13] developed a frequency-domain, finite-element LEE solver based
on the streamline upwind Petrov–Galerkin (SUPG) scheme for jet and turbofan exhaust problems. Similarly,
the present paper develops a frequency-domain code using finite differences. This code is named FLESTURN.
In this model the geometry is assumed axisymmetric. Then, for a single spinning mode order the LEE are
reduced to a form in which only axial and radial derivatives appear (2.5-D). This form is discretized using
high-order differences, and the resulting linear system of equations is solved directly using a parallel, high
performance, sparse matrix solver.

In the following sections, the present methodology is described. Then, some simple infinite duct cases are
solved at various conditions to quickly verify the developed code. This will be followed by computations of
some radiation problems from semi-infinite ducts, including an annular duct with infinite centerbody to which
analytical solutions have been recently extended by two research groups [14,15] following Munt’s work [16].
The work of Demir and Rienstra [14] can also treat acoustically lined centerbodies beyond the exit of the
annulus. By comparing to their hard and lined wall annular duct results, it will be demonstrated that the
present LEE solver can handle problems, without much difficulty, even with reasonably high Mach number
duct flows and thin shear layers that usually trouble time-domain methods. The code will also be validated by
comparing results with the measured data for two engine exhaust configurations.
2. Model development

The geometry of interest is of a typical turbofan exhaust, having a primary flow (core) duct and secondary
flow (bypass) duct, as illustrated in Fig. 1. Acoustic waves created in the upstream regions by some
mechanisms propagate through these ducts, and then radiate to the far-field through the shear layers
emanating from the nozzle trailing edges. The LEE properly account for the refraction and amplification
effects of the generally highly non-uniform background flows both in the ducts and jets. Computationally the
acoustic modes are introduced in a limited upstream region in the core or bypass duct. The conditions imposed
here must allow outgoing waves entirely without reflection or at least absorb them to the extent that the
reflected components do not contaminate the physical solution. No boundary conditions truly simulate
outgoing wave phenomena. However, as will be illustrated later the recently developed perfectly matched
layers (PML) approach of Hu [17] satisfactorily serves to this purpose while simultaneously introducing the
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Fig. 1. General configuration.
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desired incoming waves. This approach may also be utilized effectively to absorb the outgoing waves in the
far-field.

In the following subsections, the governing equations are given first. Then, the boundary conditions for the
inlets of the ducts, far-field boundaries, and the duct walls are described. The PML equations that match to
the LEE perfectly at an interface between the interior domain and solution layers adjacent to the inlet and far-
field boundaries are also given as well as the far-field prediction technique. Finally, various discretization
approaches that have been used in the present code development are discussed.
2.1. Governing equations

The 3-D, time-dependent, LEE are transformed into the frequency domain and decomposed into periodic
azimuthal modes. This is simply done by assuming the perturbations to the primitive, dependent variables are
of the circular frequency o and of the azimuthal mode order m with the form

q0ðx; tÞ ¼ Refq̂ðx; r;oÞeiotþimyg, (1)

where

q0 ¼ ½r0; u0; v0;w0; p0�T; q̂ ¼ ½r̂; û; v̂; ŵ; p̂�T. (2)

Here r0 is the density perturbation, u0 is the axial, v0 is the radial, and w0 is the azimuthal velocity perturbations
in the cylindrical polar coordinate directions ðx; r; yÞ, respectively, p0 is the pressure perturbation, i ¼

ffiffiffiffiffiffiffi
�1
p

, o
is the circular frequency, and a hat on a variable indicates a complex quantity. Upon substitution of the above
form into the Euler equations linearized about a non-uniform, axisymmetric flow state q0 ¼ ½r0;V0; p0�

T, the
equations governing the complex amplitudes of the flow perturbations may be written in cylindrical polar
coordinates as

Aint
qq̂
qx
þ Bint

qq̂
qr
þ Cintq̂ ¼ r̂int, (3)

where the Jacobian matrices A, B, and C are given by

Aint ¼

u0 r0 0 0 0

0 u0 0 0 1=r0
0 0 u0 0 0

0 0 0 u0 0

0 gp0 0 0 u0

2
6666664

3
7777775
; Bint ¼

v0 0 r0 0 0

0 v0 0 0 0

0 0 v0 0 1=r0
0 0 0 v0 0

0 0 gp0 0 v0

2
6666664

3
7777775
,
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Cint ¼

ioþ r � V0
qr0
qx

r0
r
þ

qr0
qr

r0
im
r

0

� 1
r2
0

qp0
qx

ioþ qu0
qx

qu0
qr

0 0

� 1
r2
0

qp0
qr

qv0
qx

ioþ qv0
qr

0 0

0 0 0 ioþ v0
r

im
r0r

0 qp0
qx

gp0
r
þ

qp0
qr

gp0
im
r

ioþ gr � V0

2
6666666664

3
7777777775
, (4)

and r̂int is a right-hand side source vector that may be introduced in the interior domain. When waves are
introduced from a PML, the right-hand side source vector for the interior equations is set to zero.

2.2. Boundary conditions

2.2.1. PML conditions for duct inlet/outlet and far-field

The PML equations of Hu [17] are extended to cylindrical polar coordinates and dimensionalized in a
consistent manner to the interior governing equations. Background flow is assumed uniform at the inlets of
the ducts, as well as at the far-field boundaries, with only an axial velocity component, V0 ¼ u0êx. The PML
equations are written in a similar form to the LEE. Then the Jacobian matrices are given by

Apml ¼

u0 1þ sr

io

� �
r0 1þ sr

io

� �
0 0 0

0 u0 1þ sr

io

� �
0 0 1þ sr

io

� �
=r0

0 0 u0 1þ sr

io

� �
0 1þ sx

io

� �
=r0

0 0 0 u0 1þ sr

io

� �
0

0 gp0 1þ sr

io

� �
0 0 u0 1þ sr

io

� �

2
6666664

3
7777775
,

Bpml ¼

0 0 r0ð1þ
sx

ioÞ 0 0

0 0 0 0 0

0 0 0 0 ð1þ sx

ioÞ=r0
0 0 0 0 0

0 0 gp0ð1þ
sx

ioÞ 0 0

2
6666664

3
7777775
,

Cpml ¼

ioþ sD s̄xr0 1þ sr

io

� � r0
r
sx

io r0
im
r
ð1þ

sx;r

io Þ 0

0 ioþ sD 0 0 s̄x
1
r0

1þ sr

io

� �
0 0 ioþ sD 0 0

0 0 0 ioþ sD
1
r0

im
r
ð1þ

sx;r

io Þ

0 s̄xgp0 1þ sr

io

� � gp0
r
ð1þ sx

ioÞ gp0
im
r
ð1þ

sx;r

io Þ ioþ sD

2
66666664

3
77777775
, (5)

where sD ¼ sx;r þ s̄xu0ð1þ sr=ioÞ; sx;r ¼ sx þ sr þ sxsr=io; s̄x ¼ ðsx=c0ÞM0=1�M2
0; and M0 ¼ u0=c0. The

damping constants sx and sr are of the same units as o and are given by

sx ¼ ð1�M2
0Þ

c0

Lref
sx;max

x� xi

Lx

����
����
b

; sr ¼
c0

Lref
sr;max

r� ri

Lr

����
����
b

. (6)

Here c0 is the speed of sound in the PML, Lref is a reference length, Lx and Lr are the widths of the PMLs in
the x- and r-directions, respectively, and xi and ri are the locations of the interfaces between the PMLs and
LEE domains in the x- and r-directions, respectively. The value of b is taken as 2, and smaxDx=Lref is usually
set to 2–4.

In order to excite the field with sources from the duct inlets, the PML equations are applied to the reflected
wave components. Assuming the total acoustic field is composed of an incident field plus the reflected waves,
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q̂ ¼ q̂in þ q̂re, we can write

Apml
qq̂
qx
þ Bpml

qq̂
qr
þ Cpmlq̂ ¼ Apml

qq̂in
qx
þ Bpml

qq̂in
qr
þ Cpmlq̂in, (7)

where subscript ‘in’ refers to the incident field. The incident waves are constructed using cylindrical duct
eigensolutions obtained from the solution of convected wave equation for pressure perturbation. The velocity
perturbations are found by substituting the pressure solution into the LEE. This procedure gives

p̂in ¼
X

n

Aþmn½JmðkmnrÞ þQmnY mðkmnrÞ� exp½ið�kþx;mnxþmyÞ�, (8)

r̂in ¼ ~r expð�ikx;mnÞ ¼ p̂in=c20, (9)

ûin ¼ ~u expð�ikx;mnÞ ¼
kþx;mnp̂

r0ðo� u0kþx;mnÞ
, (10)

v̂in ¼ ~v expð�ikx;mnÞ ¼ �
qp̂=qr

ir0ðo� u0k
þ
x;mnÞ

, (11)

ŵin ¼ ~w expð�ikx;mnÞ ¼ �
qp̂=qy

ir0rðo� u0kþx;mnÞ
, (12)

where kþx;mn=k ¼ ½�M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1�M2Þðkmn=kÞ2

q
�=ð1�M2Þ with k ¼ o=c0; Amn is a constant; Jm and Y m are

the mth-order Bessel functions of the first and second kind, respectively; Qmn ¼ Y 0mðskmnroÞ=J 0mðskmnroÞ, and
s ¼ ri=ro (ratio of inner radius to outer radius), and n is the radial mode order.

2.2.2. Wall boundary conditions

Consistent with the solution of the LEE, slip wall conditions are applied at a hard wall, although the
background flow may totally be viscous. When a liner element exists on a wall, the frequency-dependent
boundary condition of Myers [1] is employed. Thus, at a hard-wall the normal velocity perturbation is set to
zero, while the tangential contravariant velocity perturbations are extrapolated from the interior solution. The
density perturbation is also extrapolated from the interior points. Then, the pressure perturbation is found
from the normal momentum balance as described in Ref. [18]. The resulting wall boundary condition
equations are written in the same vector form as that of the LEE or PML equations (i.e., Eq. (3)) so that the
same schemes can be applied in a compact form with corresponding differencing and interpolation weights.

2.3. Far-field prediction

Far-field sound pressure levels (SPL) are computed employing a Kirchhoff surface integration. While in
no-flow cases a closed Kirchhoff surface is preferred, an open Kirchhoff surface is more suitable when a jet
flow exists. The Kirchhoff integration is based on the moving surface Kirchhoff formula of Farassat and
Myers [19].

For the present type of problems, the flow velocity is M1 and in the þx-direction away from the source
(engine), where the Kirchhoff surface should theoretically be located. Hence, the flow is sensed by a Kirchhoff
surface fixed relative to the engine as moving in the negative x-direction. Assuming we have this situation, the
far-field sound is extrapolated to the observer location xo by

4pp̂ðxo;oÞ ¼
Z Z

S

E1

Rð1�MRÞ
þ

p̂E2

R2ð1�MRÞ

� �
expð�ikRÞdS, (13)

where

E1 ¼ � n � rp̂þ ðM1 � nÞðM1 � rp̂Þ þ
cosfþM1 � n

c1ð1�MRÞ
þ

M1 � n

c1

� �
iop̂, (14)

E2 ¼
1�M2

1

ð1�MRÞ
2
ðcosfþM1 � nÞ (15)
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and k ¼ o=c1, M1 ¼ jM1j, R ¼ jRj, R is the radiation distance vector from the surface to the observer along
which the waves propagate, MR ¼ �M1 � R=R, and with f being the angle between the surface outward
normal n and the radiation direction indicated by the vector R. The Cartesian components of the radiation
vector R may be given as

Rx ¼ Dxos �M1 Dx2
os þ ð1�M2

1ÞðDy2
os þ Dz2osÞ

� 	1=2
, (16)

Ry ¼ Dyos, (17)

Rz ¼ Dzos, (18)

where Dxos ¼ xo � xs is the physical distance vector from the Kirchhoff surface (s) to the observer (o).

2.4. Algorithm development

One of the most important aspects of a computational aeroacoustics scheme is its approximation to the
dispersion relation of the governing equations. The numerical scheme must preserve the physical dispersion
relation for a wide range of wavenumbers. This can be shown to be dependent strongly on the discretization of
the derivatives and the grid resolution employed. It has been well established that high-order schemes have
better dispersion properties [20]. However, such algorithms usually have wide stencils which may be difficult
to deal with computationally. This is especially true in the present approach, as it deals with direct inversion
of large linear systems of equations. Wide stencils result in large bandwidth sparse coefficient matrices,
and very quick fill-ins occur during their direct inversion using a Gaussian elimination or LU type
factorization. This causes inefficiencies and large memory requirements, even for the state-of-the-art direct
solvers, such as MUMPS [21] and SuperLU [22]. Therefore, to these respects an evaluation of various
discretization schemes has been needed in the present work. Three different algorithms have been
implemented. These are the (i) standard 4th-order finite difference, (ii) dispersion relation preserving (DRP)
scheme of Tam and Webb [20], (iii) linear B-spline Galerkin method [23]. The interior stencils employed by
these schemes are shown in Fig. 2.

All the equations, including the boundary conditions, are transformed into a body fitted coordinate system
through the mappings x ¼ xðx; ZÞ and r ¼ rðx; ZÞ. The transformed equations may be written in the form

Ā
qq̂
qx
þ B̄

qq̂
qZ
þ C̄q̂ ¼ ¯̂r. (19)

All of the schemes applied to the above equation may be written in the following difference operator form:

X5
v¼1

XNr

r¼�Mr

XNs

s¼�Ms

ffi;j
s Ā

i;jþs

e;v ai;j
r þ ci;j

r B̄
iþr;j
e;v bi;j

s þ fi;j
s ci;j

r C̄
iþr;jþs

e;v g q̂iþr;jþs
v ¼

XNr

r¼�Mr

XNs

�Ms

fi;j
s ci;j

r
¯̂r

iþr;jþs

e , (20)

where a superscript pair (e.g., i; j) refers to a grid point index (address), Āe;v ¼ Ā, B̄e;v ¼ B̄, and C̄e;v ¼ C̄ with e

indicating the equation index (e ¼ 1; 2; 3; 4, and 5 correspond to the continuity, axial momentum, radial
momentum, azimuthal momentum, and energy equations, respectively), v indicating the dependent variable
index (qv¼1;2;3;4;5 refers to the density perturbation, axial velocity perturbation, radial velocity perturbation,
azimuthal velocity perturbation, and pressure perturbation, respectively). The interpolation weights are
denoted as f and c, and the finite difference weights are denoted as a and b. These weights are assigned
according to the scheme and the grid point.

2.4.1. Dispersion characteristics of the schemes

All of the three schemes mentioned above have different wave propagation characteristics. Consider
that we have the following 2-D advection equation for a single dependent variable û in the frequency
domain,

ioûþ cx

qû

qx
þ cy

qû

qy
¼ 0, (21)
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Fig. 2. The interior stencils used by (a) the standard 4th-order scheme, (b) DRP scheme, and (c) the B-spline Galerkin scheme.
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where cx ¼ c cos y and cy ¼ c sin y are propagation speeds in the x- and y-directions, respectively. Spatial
Fourier transform of the above equation leads to the following exact dispersion relation:

io� icxkx � icyky ¼ 0 with c2 ¼ c2x þ c2y ¼ o2=k2 and k2
¼ k2

x þ k2
y. (22)

Here c is the exact phase speed for the above advection equation.
Spatial Fourier transform of the discrete form of Eq. (21) on a uniform mesh with Dx ¼ Dy leads to the

following discrete dispersion relation:

XNr

r¼�Mr

XNs

s¼�Ms

iofi;j
s c

i;j
r exp½�iðrkx þ skyÞDx� þ

ic

Dx
ðcos yfi;j

s ai;j
r þ sin yci;j

r bi;j
s Þ exp½�iðrkx þ skyÞDx�


 �
¼ 0, (23)

where from the exact dispersion relation kx ¼ k cos y and ky ¼ k sin y. If this numerical dispersion relation is
written in the form

io� ikc� ¼ 0. (24)

By comparison the normalized numerical speed of propagation a� ¼ c�=c is found to be in the form

a� ¼ �
1

kDx
�

PNr

r¼�Mr

PNs

s¼�Ms
ðcos yfi;j

s ai;j
r þ sin yci;j

r bi;j
s Þ exp½�iðrkx þ skyÞDx�PNr

r¼�Mr

PNs

s¼�Ms
fi;j

s c
i;j
r exp½�iðrkx þ skyÞDx�

. (25)

In this relation kDx may be written for a given number of grid points per wavelength (NPPW) as
kDx ¼ 2p=NPPW, and following this relation kxDx ¼ 2p cos y=NPPW and kyDx ¼ 2p sin y=NPPW.

Figs. 3–5 show polar plots of the normalized numerical wave speed for the standard 4th-order central
difference (FD4), dispersion relation preserving (DRP) scheme, and linear B-spline Galerkin method with 6,
10, 14 grid points per wavelength (NPPW), respectively. It is evident, especially from the close-up views in
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Fig. 3. Polar plot of the numerical phase velocity, NPPW ¼ l=Dx ¼ 6. (a) Full view, (b) close-up view.
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these plots, that for all the resolutions shown, the linear B-spline Galerkin method looks superior over the
other two schemes. While the FD4 scheme looks reasonable for NPPW ¼ 14, it starts behaving poorly toward
NPPW ¼ 10 and under. While the numerical phase speed captured by the B-spline Galerkin scheme for
NPPW ¼ 6 is over 98% of the physical wave speed, this ratio is close to 102% by the DRP scheme, and to
93% by the FD4 scheme.

It is clear that among the three the ideal scheme is either the DRP or a Galerkin type algorithm. In terms of
memory requirements during the direct solution phase, the B-spline Galerkin algorithm seems certainly more
advantageous over the DRP scheme, because the former method requires a more compact stencil (Fig. 2), and
hence a smaller bandwidth. However, there are some difficulties with the B-spline Galerkin method at or near
boundaries. Suitable B-splines must be defined. Usually the ones defined at or near boundaries with simple
differences destroy the high resolution nature. Numerical experimentation in the present work showed that
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Fig. 4. Polar plot of the numerical phase velocity, NPPW ¼ l=Dx ¼ 10. (a) Full view, (b) close-up view.
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with the linear B-spline Galerkin discretization at the interior points and some low-order finite difference
procedure at the boundaries, grid to grid oscillations arise, and these are more pronounced near sharp edges.
Because of its lower bandwidth requirement and better behavior near the boundaries the standard 4th-order
scheme appeared more feasible for most situations than the DRP and B-spline Galerkin schemes, provided
that sufficient grid resolution is used.

2.4.2. Linear system of equations and its solution

The discretization of the governing equations and the boundary conditions results in a linear system of
equations with complex coefficients and right-hand sides. The whole assembled system is written as

Âgq̂g ¼ r̂g, (26)
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Y. Özyörük / Journal of Sound and Vibration 325 (2009) 122–144 131
where Âg represents the global coefficient matrix, q̂g is the global solution vector, and r̂g is the global right-
hand side vector. The coefficient matrix Âg is quite sparse. In Fig. 6 the non-zero entry locations of a
coefficient matrix that resulted on a small structured mesh using the standard, 4th-order differencing is shown.
The entries of the matrix fall around five bands which are separated from each other as a function of the
number of grid points. The direct inversion of such a matrix with all entries is prohibitive for most problems.
Therefore, for an efficient direct solution, a parallel, sparse solver is employed. Provided sufficient memory on
the computing platform, the multifrontal massively parallel sparse direct solver MUMPS [21] has been found
quite effective to solve this kind of equation systems. This is a distributed memory sparse solver based on an
LU or LDLT factorization of the matrix using a multifrontal technique [24,25].
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3. Verification of the solver

3.1. Wave propagation in infinite circular duct with flow

The developed code is tested first for propagation of spinning modes through an infinite circular duct with
flow. The radius of the duct is chosen as 1.212m, without a centerbody. Although the considered problem is
for an infinite duct, the numerical solution is carried out in a finite size domain with the PML equations solved
in two narrow layers just inside the duct inlet and outlet, respectively. Waves are introduced from both the
inlet and outlet PMLs. By setting up the problem this way, we actually test both accuracy of the developed
schemes and the ability of the PML equations for introducing spinning modes into the computational domain
and at the same time absorbing the outgoing waves. This is particularly important as there will be reflections
from the edges of acoustic treatment panels (liners) and duct sections where local impedance variation exists,
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such as the exit section of a finite duct. On the computational mesh used for this test problem grid points are
clustered near the duct wall and about an axial section along the duct. Such clusterings would normally be
needed in actual engine problems, for example near the nozzle lip.

The problem is solved at two different operating conditions. In the first the flow Mach number and the
frequency are taken as 0.459 and 866Hz, respectively. The highest azimuthal mode order that is cut on at these
conditions is m ¼ 19. The first radial mode [the (0,1) mode is the plane wave mode in this paper] is considered
in the simulations. The mesh used for this mode has the resolutions shown in Fig. 7 for the downstream and
upstream propagating (19,1) modes. The damping factors used in the PMLs are also plotted on the right of the
same figure. It is clear from the figure that there are fewer than 10 points per wavelength for the upstream
propagating waves for a significant part of the duct. There happened to be nearly 35 grid points per
wavelength at about x ¼ 3m because of clustering applied there. For the downstream propagating waves these
resolutions are a little bit higher than 18 points in the unclustered part, and about 68 points per wavelength in
the clustered region. The PMLs are taken as about 0.8 and 1.2m thick in the inlet and outlet regions,
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Y. Özyörük / Journal of Sound and Vibration 325 (2009) 122–144134
respectively. The damping factors are varied from zero at the interface between the interior LEE region and
PML to about 36 000 by the inlet and outlet. Note the logarithmic scale for the damping factor in Fig. 7. The
(19,1) modes are introduced from both ends of the duct. The results are obtained using the standard 4th-order
difference scheme, DRP scheme, and the linear B-spline Galerkin discretization.

Comparisons of the computed wall pressure with the exact solution are provided in Fig. 8. It is clear that
except in the PMLs at the inlet and outlet where damping exists, the agreement between the numerical
solutions and exact solution is excellent, showing the effectiveness of the PML equations for both absorbing
the outgoing waves and introducing the desired waves. Also the developed schemes capture the important
characteristics of the spinning waves quite accurately.

The same case is also solved on a uniform mesh with 16 grid points per length for the downstream
propagating waves. No upstream propagating waves are introduced. The domain length is set to about 6m, in
which 100 grid points are distributed. A total of 30 grid points are distributed in the radial direction. The
standard 4th-order finite difference scheme is employed for the solution. The computed fields of acoustic
pressure and radial velocity are compared to the exact solution in Fig. 9. The agreement is excellent.

The second operating condition at which solutions are obtained involves a much faster flow. The flow Mach
number is taken as 0.855, and the wave frequency is taken as 1580Hz. A uniform mesh with 850� 40 grid
points is used for the calculations, corresponding to about 10 points per length for the downstream
propagating waves. Again the standard 4th-order scheme is used. The calculated acoustic field is shown in
comparison with the exact solution near the inlet and outlet of the duct in Fig. 10. Due to insufficient grid
resolution some phase error build-up is observed as the waves approach the outlet of the duct.
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We can conclude from the study in this section that the developed code accurately calculates the important
features of spinning waves in the frequency domain, provided sufficient grid resolution exists in required
regions. The PML implementation works excellently for both upstream and downstream propagating waves.

3.2. Radiation from semi-infinite ducts

In this section we test the developed code against two types of semi-infinite ducts. These are (1) a semi-
infinite circular duct (Duct 1) (2) a semi-infinite annular duct with an infinite centerbody (Duct 2). Both ducts
have an inner radius of 0.947m and an outer radius of 1.212m. These duct configurations are shown in
Fig. 11. Computations are done using the 4th-order finite difference algorithm. In all the cases computed in
this section, the modes are introduced into the ducts via the PML equations with a unit intensity definition of
Ref. [26].

3.2.1. Radiation from Duct 1

Two different operating conditions are considered for this duct configuration. In the first the frequency is set
to 956Hz, while no flow condition is specified inside and outside the duct. The corresponding dimensionless
frequency is kro ¼ 21:4. The spinning m ¼ 19 and 10 modes are computed. Three radial modes are cut on for
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m ¼ 10, and only one radial mode propagates for m ¼ 19 which is the highest azimuthal cut-on mode at these
conditions. In Fig. 12, the far-field SPL obtained along a 46-m arc from the duct termination using a closed
Kirchhoff surface are shown together with the extended Munt’s model solutions of Demir and Rienstra [14].
The far-field SPL plot for the m ¼ 10 mode contains incoherent contributions of all the cut-on radial modes.
That is, SPL for m ¼ 10 was computed using p2

m;rms ¼ ð1=nmaxÞ
Pnmax

n¼1 p2
mn;rms. It is evident from the figures that

the present numerical solutions and the analytical solutions agree quite well.
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We consider a plug flow situation for the second operating condition for duct configuration 1. We simply set
the flow speeds through the duct and exterior to it to uniform Mach number values of Mc ¼ 0:447 and
M1 ¼ 0:219, respectively. This implies an infinitely thin shear layer exists between the flow issuing from the
duct and the external stream. However, in the present implementation no grid points lie along this separation
line between the two streams, as the solver is based on cell-centered finite differences. Again the spinning mode
orders of m ¼ 19 and 10 are solved but at a frequency of 866Hz. At the considered flow condition through the
duct, one radial mode is cut on for m ¼ 19, and two radial modes are cut on for m ¼ 10. The contributions of
both radial modes are included in the far-field results for the latter azimuthal mode, as in the previous case.
The computed far-field SPLs are compared with the analytical solutions of again Ref. [14], in Fig. 13. Despite
the open Kirchhoff surface used for the far-field computations, the peak values of the main lobes as well as
their radiation directions were captured quite accurately for both azimuthal modes.

3.2.2. Radiation from Duct 2

For this duct configuration we consider two different operating conditions. In the first, the flow Mach
numbers for the flow through the annular part of the duct and outside stream are set to uniform values of
Mb ¼ 0:447 and M1 ¼ 0:219, respectively. Again between the duct flow and external stream an infinitely thin
shear layer is assumed to exist. The frequency for the duct modes is taken as 866Hz, corresponding to a
dimensionless frequency of kro ¼ 19. The highest spinning mode order at these conditions is (19,1) mode.
Along with this mode, results are also obtained for the m ¼ 10 mode. For the latter two radial modes
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propagate, and their contributions are summed incoherently. Fig. 14 compares the computed far-field SPLs
with again the analytical solutions of Ref. [14]. The agreement between the numerical predictions and
analytical solutions is very good.

The second operating condition considers higher duct and external stream velocities and a higher frequency.
The duct passage speed is increased to Mb ¼ 0:737 while the external flow speed is increased to M1 ¼ 0:269.
The considered frequency is 1430Hz. These conditions correspond to a dimensionless frequency of kro ¼ 31:2.
At these conditions the highest azimuthal mode that is cut on is the (43,1) mode. The other two modes
solved in this test are the (23,1) and (0,1) modes. The computed near-field and far-field solutions are shown in
Figs. 15–17, respectively. In these figures the calculated far-field results are also compared with the analytical
solutions of Ref. [14]. It is clear from Fig. 15 that the radiated energy for the (43,1) mode is quite small. The
far-field numerical and analytical results agree reasonably well for this mode. As seen in Fig. 16 the numerical
and analytical solutions for the (23,1) mode agree quite well, in terms of the peak radiation direction as well as
peak SPL. It is demonstrated in Fig. 17 the peak radiation directions and SPLs for the plane wave mode (0,1)
were also captured quite accurately. However, the relatively poor agreement at lower angles for this mode is
due to the limited size of the open Kirchhoff surface used.

3.2.3. Radiation from Duct 2 with lined centerbody

In this section we present example computations with a lined surface. In this case, we consider the Duct 2
geometry with its centerbody lined beyond the duct passage termination with a non-dimensional impedance
value of Z=rbcb ¼ 2� i. The operating conditions are the same as those of the first set Duct 2 computations
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presented above. The far-field results are obtained for the (19,1) and (10,1) modes, respectively. The computed
results are compared with analytical solutions of Demir and Rienstra [14] in Fig. 18. The comparisons look as
good as the hard-wall solutions presented in the previous two sections, showing the lined wall treatment
capability of the present LEE solver.

3.3. Radiation from realistic geometries and comparison with experiment

In this section, the developed code is validated against the measured far-field acoustic data for two different
engine exhaust cowls. These nozzles have been tested within the European Framework Programme 6 project
TURNEX (Turbomachinery Noise Radiation through the Engine Exhaust) at QinetiQ, UK. One of these
engines has a short exhaust cowl, and the other one has a long exhaust cowl, as shown in Figs. 19 and 20,
respectively. The measurement and data post-processing procedures are described in detail in Arnold et al. [27]
and Tapken et al. [28], respectively. No measurements for the mean flowfield are made, but the upstream
(inlet) flow conditions for the core and bypass ducts are measured and provided. As the background flows at
these conditions, the present study uses the Reynolds-averaged Navier–Stokes (RANS) solutions obtained
through the commercial computational fluid dynamics (CFD) software Fluent [29] with the k2� turbulence
model.

Calculations are done at the static approach condition for the short cowl and at the static cutback condition
for the long cowl. To capture the effects of turbulence on the mean flow, the CFD meshes are generated with
sufficient resolution near the walls and across the expected shear layer regions. The computed Mach number
contours corresponding to the mean flowfields of the two cases are shown in Figs. 19 and 20, respectively. It is
evident from the Mach contours that the flow accelerates by the nozzle exits, reaching about 0.45 for the short
cowl, and about 0.68 for the long cowl. The development of the shear layers from the cowl trailing edges are
also quite evident. The acoustic modes propagating through the bypass ducts radiate to the far-field through
these layers.

Acoustic computations are done for a bypass spinning mode order of m ¼ 10 at f ¼ 8504Hz for the short
cowl, and for a bypass spinning mode order of m ¼ 9 at f ¼ 5743Hz for the long cowl. The former azimuthal
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Fig. 20. Mean Mach number contours for the long cowl at static cutback.
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mode carries three propagating radial modes, and the latter spinning mode carries two propagating radial
modes at the indicated conditions. The mode amplitudes are specified according to the measurements. Also,
the radial modes are combined according to their respective phases measured at the modal plane. The acoustic
meshes are generated in a way to resolve the acoustic waves both through the ducts and the shear layers with
more uniform distribution of the grid points than the CFD mesh. The CFD data are then interpolated to the
acoustic mesh through linear interpolation.

Fig. 21 displays the computed radiation pattern for (10,2) mode from the short exhaust configuration, and
Fig. 22 shows the radiated (9,2) mode from the long nacelle, as examples to the computed acoustic fields. The
contour levels for both cases are displayed in such a way that the modes have unit pascal amplitudes at the
modal planes in the bypass ducts. It is clear from Fig. 22 that some convective instabilities occur along
the shear layer between the bypass jet and ambient region. However, as expected these instabilities seem to
grow only gradually first and then decay as the shear layer grows. Comparisons with the measured far-field
SPL data for the two cases are shown in Fig. 23a and b, respectively. Good agreement is evident from the
figures for both cases.

4. Code performance and resource requirements

The above computations were done on a cluster of 12 PCs, each with a dual core Opteron processor and
4GB of ram. One of the propagation and radiation cases with a dimensionless frequency of kro ¼ 31:2
computed on a uniform 1501� 501 mesh with about 3 million unknowns required approximately 62GB of
memory by the MUMPS [21] sparse solver. This exceeded the total memory of the system (48GB), and the
remaining memory need was supplied as virtual memory from the disk swap space. When the mesh is totally
non-uniform, as in an actual engine, the memory need increases as the number of non-zero entries of the
sparse coefficient matrix increases. The solution time remains quite small despite the size of the problem. Most
of the above cases were solved in less than 30min, including the far-field predictions. The longest time taking
procedure was found to be the generation of appropriate grids.

5. Concluding remarks

In this paper a recently developed, direct, frequency-domain, linearized Euler solver, namely FLESTURN,
has been described. Sound propagation studies were carried out through infinite ducts at different flow speeds
and acoustic conditions using three different discretization algorithms. Propagation and radiation problems
were solved for semi-infinite duct configurations at moderate and high velocities, assuming the duct and
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exterior flows were separated by an infinitely thin shear layer. Comparison of the hard-wall semi-infinite
circular duct and both hard and soft semi-infinite annular duct results to the analytical solutions of Demir and
Rienstra [14] indicated very good agreement. The developed code was also applied to realistic engine
geometries at two different flow regimes, and the results were compared with experimental data with good
agreement.
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